P-120SCH sc size (KR23/43) Type: H

Dimensions (with tube)

Specifications

	mm	inch
Diameter	$23.0+0 /-1.0$	$0.91+0 /-0.04$
Height	$43.0+0 /-1.5$	$1.69+0 /-0.06$
Approximate Weight	Grams	Ounces
	48 g	1.69

Nominal Voltage				1.2 V		
Discharge Capacity*		Average**		1350 mAh		
		Rated (Min.)		1200 mAh		
Approx. Internal impedance at 1000 Hz at charged state				$10 \mathrm{~m} \Omega$		
Charge		Standard		120 mA (0.1 It) $\times 16 \mathrm{hrs}$.		
			Max Current	$60 \mathrm{~mA}(0.05 \mathrm{lt}) \times 30 \mathrm{~h}$ and over		
		Min Current	40mA (0.033It) x 48h and over			
	Charge			${ }^{\circ} \mathrm{C}$	F	
					$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$
	Discharge			$-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{F}$ to $149^{\circ} \mathrm{F}$	
			years	$-20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}$	
	Storage		months	$-20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$	$-4^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}$	

* 0.2lt discharge capacity after charging at 0.1 It for 16 hours.
${ }^{* *}$ For reference only.
Battery performance and cycle life are strongly affected by how they are used. In order to maximize battery safety, please consult Panasonic when determining charge / discharge specs, warning label contents and unit design.

Typical Charge Characteristics

Typical Discharge Characteristics

Note: [It] was previously expressed as [C]. [It] is an IEC standard expression for the amount of charge or discharge current and is expressed as: $\mathrm{It}(\mathrm{A})=\mathrm{Cn}(\mathrm{Ah}) / 1 \mathrm{~h}$.

- $[t]$ is the reference test current in ampres
- [Cn] is the rated capacity of the cell or battery in Ampere-hours. $\mathrm{n}=$ the time base [hours] for which the rated capacity is declared

